Forecasting cyberattacks with incomplete, imbalanced, and insignificant data
نویسندگان
چکیده
منابع مشابه
Forecasting Bankruptcy with Incomplete Information
We propose new specifications that explicitly account for information noise in the input data of bankruptcy hazard models. The specifications are motivated by a theory of modeling credit risk with incomplete information (Duffie and Lando [2001]). Based on over 2 million firm-months of data during 1979-2012, we demonstrate that our proposed specifications significantly improve both insample mode...
متن کاملForecasting Cyber Attacks with Imbalanced Data Sets and Different Time Granularities
If cyber incidents are predicted a reasonable amount of time before they occur, defensive actions to prevent their destructive effects could be planned. Unfortunately, most of the time we do not have enough observables of the malicious activities before they are already under way. Therefore, this work suggests to use unconventional signals extracted from various data sources with different time...
متن کاملForecasting using incomplete models
We consider the task of forecasting an infinite sequence of future observations based on some number of past observations, where the probability measure generating the observations is “suspected” to satisfy one or more of a set of incomplete models, i.e. convex sets in the space of probability measures. This setting is in some sense intermediate between the realizable setting where the probabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cybersecurity
سال: 2018
ISSN: 2523-3246
DOI: 10.1186/s42400-018-0016-5